
DOCUMENT RESUME

ED 459 832 IR 058 368

AUTHOR Geffet, Maayan; Feitelson, Dror G.
TITLE Hierarchical Indexing and Document Matching in BoW.
PUB DATE 2001-06-00
NOTE 10p.; In: Proceedings of the ACM/IEEE-CS Joint Conference on

Digital Libraries (1st, Roanoke, Virginia, June 24-28,
2001) . For entire proceedings, see IR 058 348. Figures may
not reproduce well. Supported by Israel's Ministry of
Science, Culture and Sport.

AVAILABLE FROM Association for Computing Machinery, 1515 Broadway, New York
NY 10036. Tel: 800-342-6626 (Toll Free); Tel: 212-626-0500;
e-mail: acmhelp@acm.org. For full text:
http://wwwl.acm.org/pubs/contents/proceedings/d1/379437/.

PUB TYPE Numerical/Quantitative Data (110) Reports Research
(143) Speeches/Meeting Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Bibliographic Databases; Bibliographic Records; Indexes;

Information Processing; Information Retrieval; Information
Seeking; *Online Searching; Online Systems; Vertical
Organization

IDENTIFIERS *Bibliographic Retrieval Services

ABSTRACT
An obvious and natural approach to organizing a large corpus

of data is a hierarchical index--akin to a book's table of contents. The type
of corpus dealt with here is a bibliographical repository, with entries form
a limited domain. Given such an index, it is desirable that search results
point to relevant locations in the hierarchy, rather than just providing a
flat list of entries. This is useful not only to support user searching, but
also as an aid suggesting possible places to link new entries that are
inserted into the repository. BoW is an online bibliographical repository
based on a hierarchical concept index to which entries are linked. Searching
in the repository should therefore return matching topics from the hierarchy,
rather than just a list of entries. Likewise, when new entries are inserted,
a search for relevant topics to which they should be linked is required. The
study develops a vector-based algorithm that creates keyword vectors for the
set of competing topics at each node in the hierarchy, and show how its
performance improves when domain-specific features are added (such as special
handling of topic titles and author names). The results of a 7-fold cross
validation on a corpus of some 3,500 entries with a 5-level index are hit
ratios in the range of 89-95%, and most of the misclassifications are indeed
ambiguous to begin with. (Contains 34 references.) (Author/AEF)

Reproductions supplied by EDRS are the best that can be made
from the original document.

Hierarchical Indexing and Document Matching in BoW

Maayan Geffet and Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel
{mary,feit}@cs.huji.ac.il

ABSTRACT
BoW is an on-line bibliographical repository based on a hierarchi-
cal concept index to which entries are linked. Searching in the
repository should therefore return matching topics from the hierar-
chy, rather than just a list of entries. Likewise, when new entries are
inserted, a search for relevant topics to which they should be linked
is required. We develop a vector-based algorithm that creates key-
word vectors for the set of competing topics at each node in the
hierarchy, and show how its performance improves when domain-
specific features are added (such as special handling of topic titles
and author names). The results of a 7-fold cross validation on a
corpus of some 3,500 entries with a 5-level index are hit ratios in
the range of 89-95%, and most of the misclassifications are indeed
ambiguous to begin with.

1. INTRODUCTION
An obvious and natural approach to organize a large corpus of

data is a hierarchical index akin to a book's table of contents.
The type of corpus we deal with is a bibliographical repository,
with entries from a limited domain (our prototype is on "parallel
systems"). Given such an index, it is desirable that search results
point to relevant locations in the hierarchy, rather than just provid-
ing a flat list of entries. This is useful not only to support user
searching, but also as an aid suggesting possible places to link new
entries that are inserted into the repository.

1.1 BoW Bibliography on the Web
The goal of the BoW project [9] is to create a convenient environ-

ment for using and maintaining an on-line bibliographic repository.
The key idea is that this be a communal effort shared by all the
users. Thus every user can benefit from the input and experience
of other users, and can also make contributions. In fact, the system
tabulates user activity, so merely searching through the repository
and exporting selected items already contributes to the ranking of
items in terms of user interest. A prototype implementation is avail-
able at http://www.bow.cs.huji.ac.il.

The heart of the BoW repository is a deep (multi-level) hierarchi-
cal index spanning the whole domain. The nodes in the hierarchy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.1CDL'01, June 24-28, 2001, Roanoke, Virginia, USA.
Copyright 2001 ACM 1-58113-345-6/01/0006 ...$5.00.

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

D. Cotton

259

are called concept pages. Pages near the top of the hierarchy rep-
resent broad concepts, while those near the bottom represent more
narrow concepts. The depth of the hierarchy should be sufficient so
that the bottommost pages only contain a handful of tightly related
entries (as opposed to Web search engines and scientific literature
databases like CORA [5] which contain a relatively shallow direc-
tory). A subtrees containing all the concept pages reachable from
a certain (high level) concept page is referred to as a topic. Entries
can be linked to multiple concept pages, if they pertain to multi-
ple concepts. Likewise, they can be linked at different levels of the
hierarchy, depending on their breadth and generality.

The index is navigated using a conventional browser. Normally
three frames are available (Fig. 1). The first shows the hierarchical
index, and the currently selected concept page. The second lists
entries linked to this concept page, and allows for the selection of
a specific entry. the third displays the surrogate of the chosen en-
try, including all the bibliographical data (authors, title, where and
when published), user annotations, and additional links (e.g. to
where the full text is available). Available operations on the cur-
rent entry include marking it for export, adding an annotation, and
adding links. This includes links from additional concept pages to
the entry, links between this entry and related entries (e.g. from a
preliminary version of a paper to the final version), and links to
external resources such as the full text.

The index structure is created by the site editor. The vocabulary
used in the index and annotations is uncontrolled by the system, and
users also query the system using natural language [2]. Indexing is
simplified by the fact that we use concise surrogates, rather than
full text documents [13]. We make up for the reduction in data by
enlisting users to verify indexing suggestions. Thus, when a user
introduces a new entry, the system uses the text of the entry as a
query, and finds concept pages that contain similar entries. But the
actual decision to link the new entry to these concept pages is left
to the discretion of the user.

The indexing described in this paper is based on lexical analy-
sis of concept pages and entries linked to them. For each topic,
we create a list of keywords that differentiate it from other topics
that have the same parent. The indexing then proceeds from the
root, choosing the most suitable sub-topic(s) at each point. As only
contending topics are considered, the complexity of the search is
reduced [14, 20].

1.2 Related Work
There are three basic approaches for textual documents process-

ing [15]: lexical, syntactic, and semantic analysis. A number of
systems using syntactic and semantic analysis have been developed
and are being used for research, such as DR-LINK [18], CLAM'
[8] and TREC [7, 31]. However, they are typically not significantly

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC) 2

BEST COPY AVAILABLt

U.S. DEPARTMENT OF EDUCATION
ffice of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION

ti/
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating it.

O Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

File Edit View Go Communicator

Print Security Shop Stop
_

Bookmarks t Location: frittp : //wv. b ow2. ca. huji. ac . il/bow

ay, Fro-rn-e-Fe-a7c11 Add entry 0 I Export

What's Related

.. The Issues
,[4,1 Machines end Projects
i.3. Architectures end Interconnections

Op erating Systems aid Run-Time Supp ort
General

0.-.1 Scheduling and Process ContrOl
El pCommunicaIion and Message Passing

m d Routing in networks

Remote memory access
m. LI Memory Management
L.-,: Lfi File system and Input-Output
F, Tz Hardware Support

Miscellenous

1 Programming, Languages, end Compilation
3 Perf ormance and Analysis

eti Fundamental Limits and Contention

ro cfj Performance Measures
1..0 LI Analysis, Simulation, and Prediction

0:1 LI Improving performance
Eti I Fault Tolerance and Detection
.1. Textbo oks

Communication and Message Passing
1

1 i Overview .

Lightweight Messaging Systems (Chiola 1999)

j

Adive messages

1 Active Messages: a Mechanism f or Integrated Communication
and Computation (von Eiken 1992)
Parallel Pro gemming in Split -C (Culler 1993)
CMN1D 1-..cthee hiernager on the CM-5 (Tucker 1994)
Overview of the START(*T) Muhithread.ed Computer
(Beckerle.1993)
Optimistic Active Messages: A Mechanism f or Scheduling
Communication with Computation (Wallach 1995)
IvIodels f or Asynchronous Message Handling (Langend.oen

1
1997)

ADC (Application-Device Clannels)

Ou erating System Support f or High-Speed Communication
(Drusche11996)

LIF3
r-,---
iBibTeXi

A,r
1

(tacke/94] rank this item: V' s., :-...-, '=.1 mark for exP-ort, "..<." :,")
_...

L. W. Tucker and A. Mainwaring, "CMMD : Active Messages ini the CM -.". Parallel Comput. 20(4), pp.

481-496, Apr 1994. _
Annotation by Dror Peitelson on 22/ 9/1994:

. _

How the CMMD library uses active messages as the basis to implement various communication paradigms.1
FaTinotate

Fiddllink

rCO-rrect

=
55

'Help

Re: 100%
, ,

. ... 7f. .

,

Figure 1: Screen dump of BoW showing partially opened hierarchical index.

better than the best lexical analyzers. We will discuss various lexi-
cal analyzers throughout the paper, in relation to our work.

Very little has been done so far on hierarchical indexing. In gen-
eral, it has been shown that hierarchical indexing methods outper-
form traditional flat algorithms [20, 14]. However, these studies
were based on a very wide domain and a relatively shallow hier-
archy (e.g. two levels), our work, in contrast, requires a very fine
classification, as the bottom levels of the hierarchy only contain a
small number of entries each.

Search and browsing based on a hierarchy was suggested in [24].
However, in this case the hierarchy is very strict and depends on

260

3

nested key phrases (e.g. "forest fires" is under "forest"), which al-
lows it to be automated. We take the opposite approach: the hi-
erarchy is created by humans so as to capture pertinent concepts,
and the automation comes in trying to find what characterizes this
structure.

2. OFF-LINE PREPARATION OF
KEYWORD VECTORS

The hierarchical indexing mechanism consists of two parts. The
first is an off-line traversal of the whole repository, repeated at reg-

BEST COPY AVAOLABLE

Topic Number of
clusters

Hit ratio
5-grams I Whole words

Cooking recipes 10 87% 53%
Linux 16 85% 47%

Table 1: Clustering hits ratio for two given documents collec-
tions using 5-grams versus whole words.

ular intervals (e.g. once a day) in order to compute keyword vectors
for all the topics. The second is a matching scheme that compares
new entries or queries with these pre-computed keyword vectors.

The off-line part is executed recursively for every level of the
index, top-down. The main idea is that each topic encompasses
all the concept pages in a sub-tree of the index, therefore all of
them should be taken into account while constructing its keywords
vector. The group of sibling topics, located at the same level and
having the same parent in the index are called a competitive topics
set, since they compete for keywords with each other. The algo-
rithm generates keywords vectors in five steps: parse all the pages
in the topic's sub-tree, merge them into one vector, uni.6 the result-
ing vectors to include the same words, normalize the weights of
the words in all the vectors, and choose the most relatively frequent
ones to represent the corresponding topics.

2.1 Parsing
The first stage is parsing the text of concept pages, with the goal

of creating a vector of all the words in the given concept page [30,
33], denoted by Vocpage. This of course requires us to define
"word".

The natural definition is a completely separated meaningful string.
This has the well-known disadvantages of treating related words as
being different, and the well-known solutions such as stemming
(e.g. [23, 19]). An alternative is to use n-grams (substrings of
length n of words: for example, "algorithm" will be turned into
"algor", "lgori", "gorit", "orith", and "rithm") [1]. We prefer the
latter, and specifically use 5-grams, based on a separate study' in
which documents were clustered automatically based on similarity
and this was compared with manual clustering (Table 1). But in
order to avoid 5-grams that are largely based on common suffixes
and therefore meaningless, we also use stemming first.

Note that longer words are represented by more 5-grams in the
vocabulary vector than shorter ones, which gives them more weight
in the comparisons. Thus it would be interesting to check if similar
results would be obtained by using whole words, and weighting
them according to length.

In any case, from now on the word "word" will mean a 5-gram.

2.2 Merging
After parsing all the concept pages in a topic's sub-tree, the re-

sulting vocabulary vectors are merged. The resulting vector in-
cludes the complete vocabulary of the topic:

VOCtopic = V ocpage1 U VOCpage2 U U VOCpagen

The counters indicating how many times each word appears are
summed as described below.

2.3 Unification
In order to compare a query with a set of competitive topics, the

vocabulary vectors of these topics must span the same space. We
therefore create a unified vocabulary that includes all the words that

1In cooperation with E. Boncheck.

261

4

80000

70000

60000

s0000

>
40000

8 30000

20000

10000

2000 4000 6000 8000 10000 12000 14000 16000
5-grams

Figure 2: Example of counter values for 5-grams in the vocab-
ulary of a top-level topic.

appear in any of the competitive topics:

V OCcompet set = Voctopici U V OCtopic2 U U V oCtopick

We then normalize the vocabulary vectors of the individual top-
ics to include all these words, by adding the missing ones with a
count of zero. The resulting normalized vectors will be denoted by
NormVociopic

2.4 Counters Normalization
In order to select meaningful keywords, we need to consider the

number of times each word appears in each topic. As shown in Fig.
2, these values vary considerably. But they also suffer from the
scaling effect problem [15]: the counter values in "small" topics
are generally lower than in "big" topics, leading to an assignment
of all the keywords to the bigger topics. To compensate for this, we
need to normalize the counters based on the size of each topic.

The simplest approach is to divide the counter values by the total
number of the words in the topic. However, according to Zipfs
formula [34], rank x count 7:.- constant (where the words in
the text are ranked in order of decreasing count), so the number
of distinct words in the text grows much slower than their counts.
Practically, about 50% of the regular text content consists of the
same 250 words [15]. Therefore this method does not lead to good
normalization (Fig. 3).

The most popular algorithm is TFIDF (Term Frequency Inverse
Document Frequency) [27, 26, 6]. However, this technique does
not take into account the frequency of term occurrences in other
documents in the collection, based on the assumption that there are
very many documents. In our case, we are trying to distinguish
between a small set of topics, so an adjustment is needed. When
applied directly, TFIDF did not produce good results (Fig. 3).

Our chosen approach is to normalize the counters on-the-fly dur-
ing the previous three steps. Since we are interested in defining a
topic's vocabulary, words which occur frequently in one particular
entry within it should not have a higher weight. Thus, we count
each word only once for every entry containing it in the concept
page. For example, given a topic with 5 entries, the maximal weight
of a word is 5 if it appears in all the entries, but if it appears twice in
one entry and three times in another, its weight will only be 2. This
normalization is implemented as part of the parsing algorithm. To

2500

2000

a)

1500

0

To 1000

500

0
2000 4000 6000 8000 10000 12000 14000 16000

number of 5-grams in topic

unnormalized
divided by size

TFIDF
normalized

Figure 3: The influence of various normalization strategies on
the 5-grams frequencies in the top level competitive set of 7 top-
ics.

deal with the fact that concept pages have different sizes, the coun-
ters are further normalized by dividing by the number of entries in
a page or topic. This is done as part of the merging and unification.

The comparative results of this method are illustrated in Fig. 3.
As shown in the graph the maximal weights have reached the uni-
form distribution irrespective of the topic size.

2.5 Keywords Selection Heuristic
A keyword is a word that characterizes a concept and differenti-

ates one topic from others [15]. Thus, in order to decide whether a
word is a keyword of some topic, one should consider its frequency
(weight) in this topic, and also compare with its weights in all the
competitive topics. The basic idea is that if a word is extremely fre-
quent in one particular topic and relatively rare in others, then we
may use it as a keyword for this topic. If a word has similar weight
in all the topics, then it does not represent any of them, even if its
weight is high [29].

One way to assess the discriminatory power of a word is based on
the difference between its maximal and minimal counter values in
different topics in the competitive set. More formally, the algorithm
is as follows (where NormVoct(w) denotes the counter value for
word w in the normalized vector of topic t):

1. For each topic in the competitive set, find those words that
achieve their maximal counter value in this topic:

Maxt = {wIVi, i t : NormVoct(w) > NormVoci(w)}.

2. For these words, find the range of counter values:

Vw, w E Maxt,
Di f (w) = maxit{(NormV oct(w) NormVoci(w))}.

3. sort the words in Maxt according to Di f (w) in a descend-
ing order.

4. Choose the top 10% of the words (those with the biggest
difference values) and place them in the keywords vector
Tkeyst.

A possible problem with this definition is that the difference can
be large because the minimal value is very small. An alternative is

262

5

Heuristic used Hit ratio

extreme values differences 48%
two highest values differences 62%
if (max_weight > avg+std_dev) 87%

Table 2: Correct classification rate when using alternative
heuristics for keyword selection.

therefore to use the difference between the two top counter values
in step 2. The definition then becomes

Di f (w) = NormVoct(w) maxiot{NormVoci(w)}.

This version selects the words with significantly greater weight in
one particular topic than in all the others, but may miss cases in
which a word has a high count in 2 or 3 topics (which may happen
as shown in Fig. 4). Specifically, in the BoW corpus the gap be-
tween the two highest values is the largest in 65-79% of the cases,
but the gap between the 2nd and 3rd is the largest in another 15-
22%.

Another disadvantage of this heuristic is the percentage of words
to be chosen as the most significant: we decided to choose an
empirically-determined 10% threshold, but maybe for other repos-
itories it will be reasonable to use another threshold. An alternative
is to choose the most significant words according to their statistics.
Specifically, we propose to select those words whose counter value
is larger than the average plus one standard deviation:

1. For each word calculate the average counter value:

average(w) = E NormVoci(w)
1<i<n

(where n is the number of topics in the competitive set).

2. Calculate the standard deviation:

std_dev(w) = .197;

1

E (NormVoci(w) average(w))2.
<i<n

3. If max _weight(w) > average(w) + std_dev(w) then
the word w is a keyword of the maximal weight topic, other-
wise it does not represent any topic since it is almost equally
frequent in all of them.

To check if the word should be a keyword for other topics as well,
the highest value is removed and the procedure repeated for the
remaining topics.

To compare the above heuristics we used them to classify 200
entries from the BoW prototype repository. The results are shown
Table 2, and indicate that the last heuristic (using the average and
standard deviation) is the best.

2.6 Optimizations

2.6.1 Stop-lists
A well-known optimization in classifications based on lexical

analysis is the definition of a stop-list a list of common words
that should be ignored. In order to generate the list automatically, a
threshold distinguishing the most common words should be found.
Numerous studies of documents show that 30% of general English
text encompassing millions of words is made up of only 18 distinct
words [15]. Usually, stop-lists contain about 250-300 terms [32,
25, 10]. However, our repository is limited to a focused scientific
domain, so its language is rather limited, and may vary among top-
ics. Thus, the stop-list should contain only those words which are

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

7
1

4,111/1
1 2 3 4 5 6 7

IhITT
1234567

1 2 3 4 5 6 7

1411111
1 2 3 4 5 6 7

41-7,77-17

1 2 3 4 5 6 7

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

7

111111-7
1 2 3 4 5 6 7

ii
1 2 3 4 5 6 7

R
7
7

ILT-TITT7
1 2 3 4 5 6 7

1 2 3 4 5 6 7

111,11ii
1234567

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

7

iirTT I I

1 2 3 4 5 6 7

/TTTT I I

1 2 3 4 5 6 7

IITTTI
1 2 3 4 5 6 7

ITTT1I
1 2 3 4 5 6 7

7

1 2 3 4 5 6 7

500 7 500 1
400 400 1
300 -1 300
200 200 !
100], 100

0 1111777 0 1T,TTTT
1 2 3 4 5 6 71 2 3 4 5 6 7

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

ITTT I

1 2 3 4 5 6 7

1,TTTII
1 2 3 4 5 6 7

7
7

VI!.TTT
1 2 3 4 5 6 7

1 2 3 4 5 6 7

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

4111177
1 2 3 4 5 6 7

141,11,11
1 2 3 4 5 6 7

116
1 2 3 4 5 6 7

II
1 2 3 4 5 6 7

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

500
400
300
200
100

0

7

li !TUT
1 2 3 4 5 6 7

1ITil
1 2 3 4 5 6 7

7

1111177TT
1 2 3 4 5 6 7

ITT I r

1 2 3 4 5 6 7

1114,T77
1 2 3 4 5 6 7

Figure 4: Distribution of word counts in the top level 7 topics for 30 selected 5-grams. The counters are sorted in a descending order.

common in all the topics in the competitive set. This leads us to the
following method for stop words identification:

stop_list = {wIVi, NormVoci(w) > r},

where r is an empirically selected threshold on the counter values.
According to our observation of the common words values dis-

tribution, the upper value at the top level is greater than at lower
levels. The best T value is 80 for the highest level of the hierar-
chy, 60 for the second one, and 50 for the rest, where the average
maximal counters are 320, 240 and 200, respectively. Thus the em-
pirically obtained rule is that a stop-words lower bound threshold
is a quarter of the average maximal frequencies for the given com-
petitive set of topics.

Another interesting question is whether the stop-lists at various
locations in the hierarchy will differ. It is reasonable to expect that
words like "network", "software", and "language" will be impor-
tant at the highest level of the hierarchy, since each of them leads
to an appropriate broad topic, such as "architecture and intercon-
nections", "operating systems and run-time support", and "pro-
gramming, languages, and compilation" (see Fig. 1). Obviously,
inside the topic "programming, languages, and compilation" the
words "programming" and "languages" should be the first ones to
go to the stop-list. However, our observation of the parallel sys-
tcms repository has shown that most of the stop-words at all the

263

6

levels were the same, while for every lower level several additional
common stop-words were added. The total number of stop-words
is around 200 with slight differences for various competitive sets.

2.6.2 Special Treatment for Selected Fields
Another means for optimization is using domain-specific knowl-

edge. In our case the domain is a bibliographical repository, which
is classified into topics. Thus special fields like authors names and
topic titles may carry special significance.

For example, the topics and sub-topics title fields may be ex-
pected to reflect the contents of the topic, and this is based on a
semantic understanding by a human editor. It is therefore desirable
to use these words as keywords, even if the counter-based algorithm
described above does not recognize them as such.

The special treatment of author names is founded on the assump-
tion that usually scientists tend to concentrate their work in a rather
narrow area of research. Therefore if several of the given author's
publications appear in one specific topic of the competitive set, but
not in the others, then it is sensible to suggest that the new article
will also belong to this topic. As most of the author names appear
too rarely and thus do not survive the keyword filtering process,
special treatment is required. Just as in the case of topic titles, we
simply treat author names explicitly as keywords. For this purpose,

the first and last names are concatenated and treated as a single
terin.

2.6.3 Thesauri
The final major problem to be considered here is the use of sim-

ilar or related terms (synonyms). Thus the use of thesauri in order
to recognize variants or to control the vocabulary has been sug-
gested [3]. A specific feature of our index is that it contains a lot
of names of projects, systems, and tools, which are often referred
to by acronyms. Text observations show that typically such terms
occur in one of the following formats at least once [16]:

1. The full term words with capital letters and then the acronym
consisting of the same first capital letters in parenthesis.

2. The acronym is followed by the parenthesized full term words
interpretation.

Based on this we developed a thesaurus-builder which is responsi-
ble for lexical text analysis and extracting the full expressions and
their acronyms, and used it to construct a dictionary of acronyms.
This was used during parsing to check if the acronym or its interpre-
tation occur in any particular concept vocabulary, and if so it was
explicitly entered into the keywords vector. User queries are also
checked against the thesaurus, and expanded in a similar manner.

3. ON-LINE SEARCHING
Given the keyword vectors for all the repository's topics, those

matching queries can be found. This is done in two cases: when
a user issues a search by specifying authors and/or keywords, and
when a user inserts a new entry into the repository. In this latter
case, the goal is to recommend topics to which the new entry may
be linked.

An important goal is that a retrieved set will be of "reasonable"
size large enough to give the user a choice but not too large.
BoW therefore doesn't retrieve a set of individual documents in
response to a query. Instead, it returns whole concept pages. More-
over, if many of these concept pages belong to the same higher-
level topic, that topic is returned rather than listing the lower level
ones.

3.1 Matching and Ranking
Matching and ranking go together we want to find the topics

that match the query to the highest degree. Several methods for
such ranking exist [21]. The most popular are based on the TFIDF
algorithm described in section 2.4 [26, 30, 28, 27] and will be re-
jected here for the same reasons. An alternative approach which is
usually used in clustering (e.g. in Isodata Clustering) is to compute
the distances between the keyword vectors. This can be applied in
our case, by comparing the distances between the query vector and
the competitive set vectors. However, the query is typically so short
that it is not reasonable to weight its terms [11] so the terms rela-
tive frequencies distance between the query and the index vectors
is not useful in our model. Thus we have to use a boolean ranking
method [17], rather than a vector space algorithm.

Our matching process works as follows:

1. Check the query data against the acronyms thesaurus, and
insert both acronyms and their full interpretation into the ini-
tially empty query vocabulary vector QV oc.

2. Parse the query (or new entry) and insert the resulting 5-
grams into the vocabulary vector QV oc (with no terms weights
considerations).

3. Starting from the highest level topics, measure the similarity
of the query to all topics in the competitive set by counting
the number of common words in the vectors:

scoreopic =I QVoc n T K eystopic

4. Select the topics with the highest score, and continue recur-
sively to lower levels. The selection criterion is that the score
be higher than the average plus a standard deviation, as was
done in section 2.5. This gives good results because in 84%-
91% of the queries the biggest gap is between the highest
and the next topic, or between the second highest and the
third one (Fig. 5).

Note that we don't examine all the tree branches, but only those
which survive the filtering criteria, thus reducing the computational
cost. This technique, called tree pruning, was also employed by
others [14, 20], except that they choose only the single most suit-
able sub-topic at each level. The main disadvantage of such aggres-
sive "single-path" pruning is that a failure at one of the higher levels
will cause all the classification process to fail, whereas pruning that
keeps two or three branches for further examination attains almost
the same accuracy as full tree evaluation. Therefore, our ranking
scheme does not suffer from the irrecoverable errors occurrence
problem. Choosing more than one also meets our expectation that
an article may refer to several categories in the bibliography.

3.2 Output Representation
Observe that the total number of selected topics may grow expo-

nentially while descending the tree, if most subtopics are selected
at each stage. To avoid showing the user such a long list of hits, we
replace them all by their shared father. As the result, the more gen-
eral (higher level) topic will be returned to the user. The condition
for such output compression is that at least 50% of the particu-
lar topic's children and more than two of them are in the resulting
list. The compressing routine is performed recursively from the
bottom to the root of the index. The results of output compression
are demonstrated in Fig. 6. The output was compressed for about
25% of the queries, where the majority of the compressed output
sets were those including 14 links and more, only 10% of them re-
mained untouched. On the other hand, only 10% of smaller sets
(up to 13 links) were compressed. The compression ratio is quite
big, and the size of compressed output sets was decreased by half
in average.

Given the topics selected by the ranking process, and remain-
ing after output compression, the question is how to display them
on the screen. The dilemma is how to reconcile two contradicting
considerations: keep both the concept pages' topological locations
in the hierarchy (as in the Berkeley Cha-Cha Search Engine [4]),
and their respective ranking with regard to this query (as is typi-
cally done in search engines, e.g. Northernlight [22]). Our solution
is to display the original index tree, with the selected links opened
and marked with different colors and font sizes according to their
relevance to the query.

4. EVALUATION
In order to check the final algorithm performance we have con-

ducted a sequence of 5 experiments employing 7-fold cross valida-
tion over a corpus of about 3,500 bibliographic entries. The corpus
is focused on the domain of parallel systems, with an index that has
an average depth of 5 and an average branching factor of 6. Ev-
ery experiment was based on about 500 randomly chosen entries,
which were extracted from the repository. The automatic off-line

264

7

150
120
90
60
30

0 -11 11,7 TT
1 2 3 4 5 6

150 7
120
90 d,
60
30

0

1 2 3 4 5 6

150
120

90
60
30

0

150
120
90
60
30

0

R

1 2 3 4 5 6

liT,TT
1 2 3 4 5 6

150
120

90
60
30

0

150
120

90
60
30

0

1TTTTT
1 2 3 4 5 6

7

1 2 3 4 5 6

150 150 150
120 120 120

90 90 d 90
60 60 60 730 30

0 liff 38 1TITTTT 0 1T7TTT
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

150
120

90
60
30

0

150
120

90
60
30

0

1 2 3 4 5 6

150
120

90
60
30

0

150
120

90
60
30

0

2 3 4 5 6

2 3 4 5 6

150
120

90
60
30

0

150
120

90
60
30

0

PITTT
1 2 3 4 5 6

1 2 3 4 5 6

150
120

90
60
30

0

150
120

90
60
30

0

150
120

90
60
30

0

150
120

90
60
30

0

150
120

90
60
30

0

1-11-f-fvf
1 2 3 4 5 6

ilYTTT
1 2 3 4 5 6

R
7

11114i1

1 2 3 4 5 6

150
120

90
60
30

0

150
120

90
60

38

150
120

90
60
30
0

150
120

90
60
30

0

150
120

90
60
30

0

1
1
7
7
+11-1F-T-T-T

1 2 3 4 5 6

7
7
7

/ I I !TT

150
120

90
60
30

0

150
120

90

3680

1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

7

TTITTT
1 2 3 4 5 6

150
120

90
60
30
0

150
120

90
60
30

0

150
120

90
60
30

0

liTTTT
1 2 3 4 5 6

*ITT
1 2 3 4 5 6

-1

1 2 3 4 5 6

Figure 5: Distribution of topics scores (in a competitive set of 6 topics) for 30 sample queries. The topics are sorted in a descending
order for each one.

uncompressed
compressed

0 50 100 150 200 250 300 350 400 450

queries

Figure 6: Results of the compression procedure for 500 queries
from one of the 7-fold cross validation experiments (described
below), sorted in descending order by the uncompressed output
sets sizes.

265

indexing was performed on the remaining 3,000 entries, and the re-
sulting keyword vectors used to re-insert the 500 entries that were
extracted. The hit ratio for each case was computed by compar-
ing the algorithm's classification of these entries with their original
manual classifications (Fig. 7). Manually checking those that were
misclassified revealed that in many cases they were indeed ambigu-
ous, and had very short annotations that only included very general
terms.

Our experimental results have corroborated those of McCallum
et al. that larger vocabulary sizes generally perform better. For
larger branches of the index our algorithm selects more keywords,
and the classification reached its highest accuracy (near 100%). For
example, the "Operating Systems and Run-Time Support" topic,
which is one of the biggest topics in the repository with over 7,700
distinct five-grains vocabulary, got 100% hit ratio, whereas "Algo-
rithms and Applications" which is a smaller topic, containing about
3,700 keywords, attained only 92% hit ratio. Another evidence is
the decrease in hits percentage for lower levels, due to the smaller
number of entries and therefore the smaller number of keywords,
as shown in Fig. 8.

Generally, the results indicate that the more information is avail-
able about each concept and each query, the better the matching

Authors as keywords
and acronyms thesaurus

Use stoplists

: Titles treated as keywords

Normalized counters

Unnormallzed counters

Lower levels

Figure 7: The hit ratios achieved at different levels of the in-
dex hierarchy, and how they depend on different parts of the
classification algorithm.

top level
second level

third levels
lower levels

2 3 4 5

top-level topics

6 7

Figure 8: Distribution of keywords under the 7 top-level topics
(which are sorted by size).

that is achieved. However, we find that even a relatively short an-
notation of 2-3 lines is enough for a reasonably good classification.

5. CONCLUSIONS
We have developed and presented the details of a data classifica-

tion algorithm for effective concept-based storage and retrieval of
scientific papers in multi-level hierarchical repositories. The three
main features of the algorithm are its homogeneity, scale indepen-
dence, and self-updateability. The algorithm is homogeneous in
that it produces good results at all levels of the hierarchical index,

266

and does not depend on the index depth. It is scale independent due
to the normalization of the keyword vectors, resulting in fair judg-
ments for various-sized concept pages. It updates the keyword vec-
tors regularly, thus keeping them current and adjusting to changes
in the repository contents. This is done at selected intervals, rather
than on-line for each new entry, because every local change in an
individual concept page causes changes in the entire topic's vocab-
ulary, and so in the selection of keywords across the entire compet-
itive set; moreover, this effect can propagate up the hierarchy.

Results of experimentation with the BoW prototype repository
on parallel systems are very promising. At the top level, nearly 95%
of the entries were classified correctly, and this dropped to just un-
der 90% for the lowest levels. Remarkably, this was achieved with
only the entry details (mainly title and authors), and very short an-
notations typically between one and three sentences long. There
was no access to or use of full text. The entries that were mis-
classified were found to be ambiguous and had short or missing
annotations.

In the future we hope to test our algorithm on additional reposi-
tories. Possible extensions include automatic construction of a full
thesaurus for all the words and phrases in the given corpus. A big-
ger challenge is automatic index creation from scratch. Our sug-
gestion is to use one of the hierarchical clustering methods [12]
combined with the described automatic indexing algorithm.

Acknowledgements
This work was supported by the Ministry of Science, Culture &
Sport under the program to develop scientific and technological in-
frastructure.

6. REFERENCES

9

[I] Adamson, G. and J. Boreham. 1974. "The use of an
Association Measure Based on Character Structure to
Identify Semantically Related Pairs of Words and Document
Titles," Information Storage and Retrieval, 10, 253-260.

[2] Blair, David. C. 1990. Language and Representation in
information retrieval. N.Y.: Elsevier.

[3] Chen, H., Martinaz, J., Kirchhoff, A., Ng, T. D., and Schatz,
B. R. "Alleviating search uncertainty through concept
association: automatic indexing, co-occurrence analysis, and
parallel computing." J. Am. Soc. Inf Sys. 49(3), 216-206.

[4] Chen, M., Hearst, M., Hong, J., and Lin, J., 1999. "Cha-Cha:
A System for Organizing Intranet Search Results". In 2nd
USENIX Symp. Internet Technologies & Systems.

[5] CORA - Computer Science Research Paper Search Engine,
http://cora.whizbang.com

[6] Doszkocs, T.E. 1982. "From Research to Application: The
CITE Natural Language Information Retrieval System," in
Research and Development in Information Retrieval, eds. G.
Salton, and H. J. Schneider, pp. 251-62. Berlin:
Springer-Verlag.
Dumais, Susan T. 1995. "Latent semantic indexing (LSI):
TREC-3 report." In Overview of 3rd Text Retrieval
Conference (TREC-3). Donna K. Harman, ed. 1995.
Washington, D. C.: Nist Special Publication.

[8] Evans, David A., Robert G. Lefferts, Gregory Gregenstette,
S. Henderson, William Hersh, and A. Archbold. 1993.
"CLARIT TREC design, experiments, and results." In 1st
Text Retrieval Conference (TREC-1). ed. Donna K. Hannan,
pp. 251-286. 1993. Washington, D. C.: Nist Special
Publication, 500-207.

[7]

[9] Feitelson, D. G., 2000. "Cooperative Indexing,
9 Classification, and Evaluation in BoW". In 7th IFCIS

Conf Cooperative Information Syst., 0. Etzion and P.
Scheuermann (eds.), Springer-Verlag LNCS Vol. 1901, pp.
66-77.

[10] Fox, C. 1990. "A Stop List for General Text". SIG1R Forum.
[11] Frakes, W. B., Baeza-Yates, R. eds. 1992. Information

Retrieval - Data Structures and Algorithms, Englewood
Cliffs, N. J.: Prentice Hall.

[12] Jardine, N. and C. J. vanRijsbemgen. 1971. "The Use of
Hierarchic Clustering in Information Retrieval." Information
Storage and Retrieval, 7(5), 217-40.

[13] Kerner, C. J., and T. F. Lindsley. 1969. "The value of
abstracts in normal text searching." In The information
bazaar: Proc. 6th Ann. Nat'l Colloq. Information Retrieval,
Philadelphia, pp. 437-440.

[14] Koller, D., and Sahami, M. 1997. "Hierarchically classifying
documents using very few words". In Proc. 14th Int'l Conf
Machine Learning (ML-97), pp. 170-178, Nashville,
Tennessee.

[15] Korfhage, R. R., 1997. Information Storage and Retrieval,
N.Y.: John Wiley and Sons.

[16] Larkey, Leah S., Ogilvie, Paul, Price, A. Andrew, and
Tamilio, Brenden, 2000. "Acrophile: an automated acronym
extractor and server". In 5th ACM Conf Digital Libraries,
pp. 205-214.

[17] Lee, Joon Ho, Myoung Ho Kim, and Yoon Hoon Lee. 1993.
"Ranking documents in thesaurus-based Boolean retrieval
systems." Information Processing & Management 30(1),
79-91.

[18] Liddy, Elizabeth D., and Sung H. Myaeng. 1993.
"DR-LINK's linguistic-conceptual approach to document
detection." In 1st Te.xt Retrieval Conference (TREC-1).
Donna K. Harman, ed. Washington, D. C.: Nist Special
Publication, 500-207, pp. 113-130.

[19] Lovins, J. B. 1968. "Development of the Stemming
Algorithm." Mechanical Translation and Computation
Linguistics,11(1-2), 22-23.

[20] McCallum, A., Rosenfeld, R., Mitchell, T., and Ng, A. Y.
1998. "Improving Text Classification by Shrinkage in a
Hierarchy of Classes". In Proc. 15th Int'l Conf Machine
Learning (ML-98), Madison, Wisconsin.

[21] McGill, M. et al. 1979. An Evaluation of Factors Affecting
Document Ranking by information retrieval systems. Project
report. Syracuse, New York: Stracuse University School of
Information Studies.

[22] The Northernlight Search Engine,
http://www.northernlight.com.

[23] Paice, Chris. 1990. "Another stemmer." SIGIR Forum 24(1),
53-61.

[24] Paynter, G. W., I. H. Witten, S. J. Cunningham, and
G. Buchanan, "Scalable browsing for large collections: a
case study". In 5th ACM Conf Digital Libraries,
pp. 215-223, Jun 1999.

[25] Salton, G., and M. McGill. 1983. Modern Information
Retrieval. New-York: McGraw-Hill.

[26] Salton, G. and C. S. Yang. 1973. "On the Specification of
Term Values in Automatic Indexing." J Documentation
29(4), 351-72.

[27] Salton, G. 1971. The SMART Retrieval System - Experiments
in Automatic Document Processing. Englewood Cliffs, N. J.:
Prentice Hall.

[28] Salton, G. and C. Buckley. 1988. "Term-Weighting
Approaches in Automatic Text Retrieval," Information
Processing and Management 24(5), 513-23.

[29] Salton, G., H. Wu, and C. T. Yu. 1981. "The Measurement of
Term Importance in Automatic indexing." I Am. Soc. Inf
Sys. 32(3), 175-86.

[30] Salton, G. and J. Allan. 1994. "Text retrieval using the vector
processing model." Proc. 3rd Ann. Symp. Document analysis
and information retrieval, Las Vegas, Nevada, pp. 9-22.

[31] Smeaton, Alan F., R. O'Donnel, and F. Kelledy. 1995.
"Indexing structures derived from syntax in TREC-3: system
description". In Overview of 3rd Text Retrieval Conference
(TREC-3). Donna K. Harman, ed. 1995. Washington, D. C.:
Nist Special Publication.

[32] vanRijsberngen, C. J. 1975. Information Retrieval. London:
Butterworths.

[33] Wong, S.K.M., and W. Ziarko. 1985. "On generalized vector
space model in information retrieval." Annals of the Society
of Mathematics of Poland, Series 4: Fundamentals of
information 8(2), 253-267.

[34] Zipf, George Kinglsey. 1949. Human behavior and the
princtple of least effort. Cambridge, Massachusetts:
Addison-Wesley.

267

1 0

U.S. Department of Education
Office of Educatonal Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

NOTICE

REPRODUCTION BASIS

EN

Wetland Remixes Muslin Cage'

This document is covered by a signed "Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or. "Blanket").

EFF-089 (9/97)

